Volume
Volume indicators analyze trading volume to assess the strength of price movements and identify potential trend changes. These indicators help determine whether price movements are supported by volume activity.
Import Statement
from openalgo import ta, api
Getting Sample Data
# Initialize API client
client = api(api_key='your_api_key_here', host='http://127.0.0.1:5000')
# Fetch historical data
df = client.history(symbol="SBIN",
exchange="NSE",
interval="5m",
start_date="2025-04-01",
end_date="2025-04-08")
# Extract OHLCV data
high = df['high']
low = df['low']
close = df['close']
open_price = df['open']
volume = df['volume']
On Balance Volume (OBV)
OBV is a momentum indicator that uses volume flow to predict changes in stock price by adding volume on up days and subtracting volume on down days.
Usage
obv = ta.obv(close, volume)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
Returns
pandas.Series: OBV values with same index as input
Example
# Calculate OBV
obv_values = ta.obv(df['close'], df['volume'])
# Add to DataFrame
df['OBV'] = obv_values
print(df[['close', 'volume', 'OBV']].tail())
On Balance Volume with Smoothing (OBV Smoothed)
Enhanced OBV with various smoothing options including moving averages and Bollinger Bands support.
Usage
# Basic smoothed OBV
obv_smoothed = ta.obv_smoothed(close, volume, ma_type="SMA", ma_length=20)
# With Bollinger Bands
obv_bb_middle, obv_bb_upper, obv_bb_lower = ta.obv_smoothed(
close, volume, ma_type="SMA + Bollinger Bands", bb_length=20, bb_mult=2.0
)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
ma_type (str, default="None"): Smoothing type - "None", "SMA", "SMA + Bollinger Bands", "EMA", "SMMA (RMA)", "WMA", "VWMA"
ma_length (int, default=20): Moving average length
bb_length (int, default=20): Bollinger Bands length
bb_mult (float, default=2.0): Bollinger Bands multiplier
Returns
pandas.Series: Smoothed OBV values (for most ma_types)
tuple: (middle, upper, lower) for "SMA + Bollinger Bands"
Example
# Calculate various OBV smoothing options
obv_sma = ta.obv_smoothed(df['close'], df['volume'], ma_type="SMA", ma_length=20)
obv_ema = ta.obv_smoothed(df['close'], df['volume'], ma_type="EMA", ma_length=20)
# OBV with Bollinger Bands
obv_bb_mid, obv_bb_up, obv_bb_low = ta.obv_smoothed(
df['close'], df['volume'], ma_type="SMA + Bollinger Bands"
)
df['OBV_SMA'] = obv_sma
df['OBV_EMA'] = obv_ema
df['OBV_BB_Mid'] = obv_bb_mid
df['OBV_BB_Upper'] = obv_bb_up
df['OBV_BB_Lower'] = obv_bb_low
Volume Weighted Average Price (VWAP)
VWAP is the average price a security has traded at throughout the day, based on both volume and price, giving more weight to prices with higher volume.
Usage
vwap = ta.vwap(high, low, close, volume, source="hlc3", anchor="Session")
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
source (str, default="hlc3"): Price source - "hlc3", "hl2", "ohlc4", "close"
anchor (str, default="Session"): Anchor period - "Session", "Week", "Month", etc.
Returns
pandas.Series: VWAP values
Example
# Calculate VWAP
vwap_values = ta.vwap(df['high'], df['low'], df['close'], df['volume'])
# VWAP with different source
vwap_close = ta.vwap(df['high'], df['low'], df['close'], df['volume'], source="close")
df['VWAP'] = vwap_values
df['VWAP_Close'] = vwap_close
print(df[['close', 'VWAP', 'VWAP_Close']].tail())
Money Flow Index (MFI)
MFI is a momentum indicator that uses both price and volume to measure buying and selling pressure. Also known as Volume-Weighted RSI.
Usage
mfi = ta.mfi(high, low, close, volume, period=14)
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
period (int, default=14): Number of periods for MFI calculation
Returns
pandas.Series: MFI values (range: 0 to 100)
Example
# Calculate MFI with default period
mfi_14 = ta.mfi(df['high'], df['low'], df['close'], df['volume'])
# Calculate MFI with different period
mfi_21 = ta.mfi(df['high'], df['low'], df['close'], df['volume'], period=21)
df['MFI_14'] = mfi_14
df['MFI_21'] = mfi_21
print(df[['close', 'volume', 'MFI_14']].tail())
Accumulation/Distribution Line (ADL)
ADL is a volume-based indicator designed to measure the cumulative flow of money into and out of a security.
Usage
adl = ta.adl(high, low, close, volume)
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
Returns
pandas.Series: ADL values
Example
# Calculate Accumulation/Distribution Line
adl_values = ta.adl(df['high'], df['low'], df['close'], df['volume'])
df['ADL'] = adl_values
print(df[['close', 'volume', 'ADL']].tail())
Chaikin Money Flow (CMF)
CMF is the sum of Money Flow Volume over a period divided by the sum of volume over the same period.
Usage
cmf = ta.cmf(high, low, close, volume, period=20)
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
period (int, default=20): Number of periods for CMF calculation
Returns
pandas.Series: CMF values
Example
# Calculate Chaikin Money Flow
cmf_20 = ta.cmf(df['high'], df['low'], df['close'], df['volume'])
# CMF with different period
cmf_10 = ta.cmf(df['high'], df['low'], df['close'], df['volume'], period=10)
df['CMF_20'] = cmf_20
df['CMF_10'] = cmf_10
print(df[['close', 'CMF_20']].tail())
Ease of Movement (EMV)
EMV relates price change to volume and is particularly useful for assessing the strength of a trend.
Usage
emv = ta.emv(high, low, volume, length=14, divisor=10000)
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
volume (pandas.Series): Volume data
length (int, default=14): Period for SMA smoothing
divisor (int, default=10000): Divisor for scaling EMV values
Returns
pandas.Series: EMV values
Example
# Calculate Ease of Movement
emv_14 = ta.emv(df['high'], df['low'], df['volume'])
# EMV with custom parameters
emv_custom = ta.emv(df['high'], df['low'], df['volume'], length=21, divisor=50000)
df['EMV_14'] = emv_14
df['EMV_Custom'] = emv_custom
print(df[['close', 'volume', 'EMV_14']].tail())
Elder Force Index (FI)
Force Index combines price and volume to assess the power used to move the price of an asset.
Usage
fi = ta.force_index(close, volume, length=13)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
length (int, default=13): Period for EMA smoothing
Returns
pandas.Series: Elder Force Index values
Example
# Calculate Elder Force Index
fi_13 = ta.force_index(df['close'], df['volume'])
# Force Index with different period
fi_21 = ta.force_index(df['close'], df['volume'], length=21)
df['Force_Index_13'] = fi_13
df['Force_Index_21'] = fi_21
print(df[['close', 'volume', 'Force_Index_13']].tail())
Negative Volume Index (NVI)
NVI focuses on days when volume decreases from the previous day, using cumulative rate of change.
Usage
# Basic NVI
nvi = ta.nvi(close, volume)
# NVI with EMA signal line
nvi, nvi_ema = ta.nvi_with_ema(close, volume, ema_length=255)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
ema_length (int, default=255): EMA period for signal line
Returns
pandas.Series: NVI values
tuple: (nvi, nvi_ema) for nvi_with_ema method
Example
# Calculate NVI
nvi_values = ta.nvi(df['close'], df['volume'])
# Calculate NVI with EMA signal
nvi_line, nvi_signal = ta.nvi_with_ema(df['close'], df['volume'])
df['NVI'] = nvi_values
df['NVI_Line'] = nvi_line
df['NVI_Signal'] = nvi_signal
print(df[['close', 'volume', 'NVI']].tail())
Positive Volume Index (PVI)
PVI focuses on days when volume increases from the previous day.
Usage
# Basic PVI
pvi = ta.pvi(close, volume, initial_value=100.0)
# PVI with signal line
pvi, pvi_signal = ta.pvi_with_signal(close, volume, signal_type="EMA", signal_length=255)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
initial_value (float, default=100.0): Initial PVI value
signal_type (str, default="EMA"): Signal smoothing type ("EMA" or "SMA")
signal_length (int, default=255): Signal line period
Returns
pandas.Series: PVI values
tuple: (pvi, signal) for pvi_with_signal method
Example
# Calculate PVI
pvi_values = ta.pvi(df['close'], df['volume'])
# Calculate PVI with signal line
pvi_line, pvi_signal = ta.pvi_with_signal(df['close'], df['volume'])
df['PVI'] = pvi_values
df['PVI_Line'] = pvi_line
df['PVI_Signal'] = pvi_signal
print(df[['close', 'volume', 'PVI']].tail())
Volume Oscillator (VOLOSC)
Volume Oscillator shows the relationship between two exponential moving averages of volume.
Usage
vo = ta.volosc(volume, short_length=5, long_length=10)
Parameters
volume (pandas.Series): Volume data
short_length (int, default=5): Short EMA length
long_length (int, default=10): Long EMA length
check_volume_validity (bool, default=True): Check for valid volume data
Returns
pandas.Series: Volume Oscillator values
Example
# Calculate Volume Oscillator
vo_5_10 = ta.volosc(df['volume'])
# Volume Oscillator with custom periods
vo_3_15 = ta.volosc(df['volume'], short_length=3, long_length=15)
df['VO_5_10'] = vo_5_10
df['VO_3_15'] = vo_3_15
print(df[['volume', 'VO_5_10']].tail())
Volume Rate of Change (VROC)
VROC measures the rate of change in volume over a specified period.
Usage
vroc = ta.vroc(volume, period=25)
Parameters
volume (pandas.Series): Volume data
period (int, default=25): Number of periods to look back
Returns
pandas.Series: VROC values
Example
# Calculate Volume Rate of Change
vroc_25 = ta.vroc(df['volume'])
# VROC with different period
vroc_12 = ta.vroc(df['volume'], period=12)
df['VROC_25'] = vroc_25
df['VROC_12'] = vroc_12
print(df[['volume', 'VROC_25']].tail())
Klinger Volume Oscillator (KVO)
KVO is designed to predict price reversals by comparing volume to price movement.
Usage
kvo, kvo_trigger = ta.kvo(high, low, close, volume, trig_len=13, fast_x=34, slow_x=55)
Parameters
high (pandas.Series): High prices
low (pandas.Series): Low prices
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
trig_len (int, default=13): Trigger line EMA period
fast_x (int, default=34): Fast EMA period
slow_x (int, default=55): Slow EMA period
Returns
tuple: (kvo, trigger) pandas.Series
Example
# Calculate Klinger Volume Oscillator
kvo_line, kvo_trigger = ta.kvo(df['high'], df['low'], df['close'], df['volume'])
# KVO with custom parameters
kvo_custom, kvo_trig_custom = ta.kvo(df['high'], df['low'], df['close'], df['volume'],
trig_len=9, fast_x=21, slow_x=34)
df['KVO'] = kvo_line
df['KVO_Trigger'] = kvo_trigger
print(df[['close', 'volume', 'KVO', 'KVO_Trigger']].tail())
Price Volume Trend (PVT)
PVT combines price and volume to show cumulative volume based on price changes.
Usage
pvt = ta.pvt(close, volume)
Parameters
close (pandas.Series): Closing prices
volume (pandas.Series): Volume data
Returns
pandas.Series: PVT values
Example
# Calculate Price Volume Trend
pvt_values = ta.pvt(df['close'], df['volume'])
df['PVT'] = pvt_values
print(df[['close', 'volume', 'PVT']].tail())
Relative Volume (RVOL)
RVOL compares current volume to average volume over a specified period.
Usage
rvol = ta.rvol(volume, period=20)
Parameters
volume (pandas.Series): Volume data
period (int, default=20): Period for average volume calculation
Returns
pandas.Series: RVOL values
Example
# Calculate Relative Volume
rvol_20 = ta.rvol(df['volume'])
# RVOL with different period
rvol_10 = ta.rvol(df['volume'], period=10)
df['RVOL_20'] = rvol_20
df['RVOL_10'] = rvol_10
print(df[['volume', 'RVOL_20']].tail())
Complete Volume Analysis Example
from openalgo import ta, api
import pandas as pd
# Get data
client = api(api_key='your_api_key_here', host='http://127.0.0.1:5000')
df = client.history(symbol="SBIN", exchange="NSE", interval="5m",
start_date="2025-04-01", end_date="2025-04-08")
# Calculate multiple volume indicators
df['OBV'] = ta.obv(df['close'], df['volume'])
df['VWAP'] = ta.vwap(df['high'], df['low'], df['close'], df['volume'])
df['MFI'] = ta.mfi(df['high'], df['low'], df['close'], df['volume'])
df['ADL'] = ta.adl(df['high'], df['low'], df['close'], df['volume'])
df['CMF'] = ta.cmf(df['high'], df['low'], df['close'], df['volume'])
df['EMV'] = ta.emv(df['high'], df['low'], df['volume'])
df['Force_Index'] = ta.force_index(df['close'], df['volume'])
df['Volume_Osc'] = ta.volosc(df['volume'])
df['PVT'] = ta.pvt(df['close'], df['volume'])
df['RVOL'] = ta.rvol(df['volume'])
# KVO requires multiple returns
df['KVO'], df['KVO_Trigger'] = ta.kvo(df['high'], df['low'], df['close'], df['volume'])
# Display results
volume_indicators = ['close', 'volume', 'OBV', 'VWAP', 'MFI', 'ADL', 'CMF',
'EMV', 'Force_Index', 'Volume_Osc', 'PVT', 'RVOL', 'KVO']
print("Volume Indicators Analysis:")
print(df[volume_indicators].tail(10))
# Volume analysis summary
print("\nVolume Indicators Summary (Last Period):")
last_row = df.iloc[-1]
print(f"Close Price: {last_row['close']:.2f}")
print(f"Volume: {last_row['volume']:,}")
print(f"VWAP: {last_row['VWAP']:.2f}")
print(f"MFI: {last_row['MFI']:.2f}")
print(f"Relative Volume: {last_row['RVOL']:.2f}")
print(f"Volume Oscillator: {last_row['Volume_Osc']:.2f}")
Volume Analysis Interpretation
OBV: Rising OBV confirms uptrend, falling OBV confirms downtrend
VWAP: Price above VWAP suggests bullish momentum, below suggests bearish
MFI: Values above 80 indicate overbought, below 20 indicate oversold
ADL: Rising ADL confirms price uptrend with strong accumulation
CMF: Positive values indicate buying pressure, negative indicate selling
Volume Oscillator: Positive values show increasing volume momentum
Relative Volume: Values above 1.0 indicate higher than average volume
Last updated